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Abstract. We assume the rate constants of Smoluchowski’s coagulation equation to be of the
form,Ki,j = a(i) · a(j)/[a(i) + a(j)− a(i + j)]. If a(i)/i > K > 0 for all i then the model will
have gelation (provided the solution exists). Ifa(i)/i → 0 asi →∞ it is then suggested that the
model will not have gelation.

1. Introduction

In this article we shall consider Smoluchowski’s coagulation equation

ċi = 1
2

i−1∑
j=1

Kj,i−j cj ci−j − ci
∞∑
j=1

Ki,j cj (1)

(16 i 6∞) under the assumption that the rate constants,Ki,j , are of the form

Ki,j = a(i)a(j)

a(i) + a(j)− a(i + j)
(2)

for some positive numbersa(i)(i = 1, 2, . . .) which satisfy

a(i + j) < a(i) + a(j) i > 1, j > 1. (3)

Clearly, equation (3) is necessary to ensure that the rate constants are positive and finite.
The main result is given in theorem 4, which states that the model will have gelation

independent of the initial condition ifa(i)/i > K > 0 for all i. Earlier, Van Dongen [1]
considered rate constants of the formKi,j = (ij)µ(i + j)ν−µK(0)(i, j) (whereK(0)(i, j) only
depends weakly oni andj ) and showed that one will get instant gelation ifν > 1 andµ > ν−1.
This result was strengthened by Carr and da Costa [2] who proved that one gets instant gelation
if the rate constants satisfyCL(iα + jα) 6 Ki,j 6 CU(ij)β for some constantsCL, CU > 0
andβ > α > 1. Buffet and Puĺe [3] showed that one gets gelation in the diagonal model
(Ki,j = 0 if i 6= j ) if the rate constants satisfy a condition which implies thatKi,i should
increase slightly faster thani asi →∞.

The form given by equation (2) is of course not the most natural form from a physical
point of view. The reason for choosing it is purely mathematical. However, the form might
be sufficiently flexible to be able to mimic some plausible forms of the rate constants. Rate
constants of the form given by equation (2) were considered by Ziff [4]. However, he only
considereda(i) = in for n integer. Forn > 1 this implies that one should change the sign of
the denominator in equation (2) and the direction of the inequality in (3). As we shall see in
the following, the interesting part occurs when 06 n 6 1 anda(i) is of a more general form.
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2. Consequences of equation (3)

Lemma 1.

a(i) < i · a(1). (4)

In other wordsa(i) cannot grow faster than linearly.

Proof. By induction on equation (3) in the forma(i + 1) < a(i) + a(1). �

Lemma 2. The limit

lim
i→∞

a(i)/i = α (5)

exists.

Proof. The sequence{a(i)/i : i = 1, 2, . . .}, is clearly bounded (above bya(1) and below by
0). Consequently, the following two limits exist:

lim sup
i→∞

a(i)/i = α1

lim inf
i→∞

a(i)/i = α0.

If α1 > α0 then we can chooseε less than 1, such that(α1−α0)/[3 · (1 +a(1))] > ε > 0.
We can then findj , such thata(j)/j < α0 + ε. By an argument similar to the argument for
lemma 1, we finda(n · j)/(n · j) < α0 + ε for any positive integern. We next chosek > j/ε

such thata(k)/k > α1− ε. For 0< m 6 j we have

a(k −m)/(k −m) > a(k)/(k −m)−m · a(1)/(k −m)
> (α1− ε) · (1 + ε)− a(1)ε(1 + ε)

> α1− ε(1 + ε)(1 +a(1)) > α0 + ε.

But among the numbersk − j , k − j + 1, . . . , k − 1, there must be one which is of the form
n · j , which gives a contradiction. �

Otherwise, the consequences of the condition in equation (3) are limited. A monotone
decrease ofa(i)/i would of course imply equation (3); but monotonicity ofa(i)/i is not
necessary (see Hardyet al [5], section 103).

3. The main theorem

We define

A(t) =
∞∑
i=1

a(i) · ci(t). (6)

Lemma (1) implies that the sum in equation (6) converges if the sum defining the total monomer
concentration,µ1, converges:

µ1(t) =
∞∑
i=1

i · ci(t). (7)

Since this sum is known to converge if a solution exists,A(t) will also exist.

Theorem 3. If equation (1) has a solution then it satisfies

A(t) 6 A(0)/[1 +A(0) · t/2]. (8)
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Proof. We shall consider the truncated version ofA(t):

AN(t) =
N∑
i=1

a(i) · ci(t). (9)

From equation (1) we get

d

dt
AN(t) 6

1

2

N∑
j=1

N∑
i=1

Ki,j cicj (a(i + j)− a(i)− a(j)) = −1

2
AN(t)

2. (10)

Integrating equation (10) we get equation (8) withAN(t) in place ofA(t). Taking the limit
N →∞ equation (8) is obtained. �

Theorem 4. If equation (1) has a solution andα > 0, thenµ1(t) goes to 0 ast →∞, i.e. the
model has gelation.

Proof. If α > 0, then we can find a strictly positive constantβ such thata(i)/i > β for all i.
This impliesA(t) > β · µ1(t) and theorem 4 is a consequence of theorem 3. �

One might wonder whether the opposite is true, thatα = 0 implies absence of gelation.
This could be so, but it is certainly not true thatα = 0 implies the existence of a constant,K,
such thatKi,j < K · (i + j) for all i andj—in fact, a counter example will be presented in the
next section. However, ifKi,j is given by equation (2) and one hasKi,j < K · (i + j), then the
results of White [6] together with theorem 4 would implyα = 0 and the analysis of Heilmann
[7] would imply that one has equality in equation (8).

Also the question of the existence of a solution is left open by the known results, although
the results of Leyvraz and Tschudi [8] and Laurençot [9] do cover many cases.

4. Consequences of equation (2)

It is not easy to draw general consequences about the rate constants from equation (2), since
it is possible to make the differencea(i) + a(j)− a(i + j) arbitrarily small for some selected
values ofi andj . However, one can examine some examples. The simplest possibility is

a(i) = 1 (11)

which gives

Ki,j = 1. (12)

This is one of the cases where the complete solution is known (Kreeret al [10]). The
corresponding case withα > 0:

a(i) = αi + β (13)

gives

Ki,j = 1
β
(αi + β)(αj + β). (14)

This model has also been solved ([8, 11]) and one thus has that the present model forKi,j ,
equation (2), covers the two cases where one knows the solution to the product form of
Ki,j (Ki,j = a(i) · a(j)).

The more general case

a(i) = iγ 0< γ < 1 (15)
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does not allow any general simplifications in the expression forKi,j . One gets fori large and
j fixed

Ki,j ≈ a(i)/(1− γ · (j/i)1−γ ) (16)

and fori large andj = i · (1− δ)
Ki,j ≈ a(i)/[(2− 2γ )(1 + δγ /2)]. (17)

It is easy to see that one can find a constant,K, such thatKi,j < K · (i + j).
If one goes one step further and takes

a(1) = a(2) = 2 a(i) = i · exp[−ε ln(ln i)] for i > 3 (18)

then one gets for largei

Ki,i ≈ i(ln i)1−ε/[2ε ln 2]. (19)

In other words one can no longer find a constant,K, such thatKi,j < K · (i + j) if ε < 1.
If we take

a(i) = αi + iγ 0< γ < 1 (20)

then the denominator forKi,j becomes the same as for the case given by equation (15) and we
get

Ki,j ≈ (αi + iγ )(αj1−γ + 1) for j 6 i (21)

except for a factor which only depends weakly onj andi.

5. Conclusion

In view of the ease with which the occurrence of gelation can be proven for the present model
and the fact that both versions of a product model for which the solutions are known are
included in the present model, then this model might be worth further investigation, at least
from a mathematical viewpoint.
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